Little Tunny

Domain: Eukarya
Kingdom: Animalia
Phylum: Chordata
Class: Osteichthyes
Order: Perciforms
Family: Scombridae
Genus: Euthynnus
Species: Euthynnus alletteratus

My husband loves to eat tuna. If he could have it every day, I think he would! Little tunny, or little tuna, is a common species of tuna found in the tropical and subtropical waters of the Atlantic Ocean, the Caribbean Sea, the Gulf of Mexico, the Black Sea, and the Mediterranean Sea.

Euthynnus allettatus can grow up to 48 inches and averages around 20 pounds when fully grown. The fish is has countershading, dark-blue gray coloring on top that fades to a silvery-white toward the belly. It has a torpedo-like shape that cuts down on water resistance, similar to species of sharks and dolphins. The base of the tail is thin, and the tail fin is crescent-shaped, allowing the little tuna bursts of speed to evade predators or to catch its prey.

There are two distinct features that help to identify little tunny. On the dark blue-gray top of the fish are a couple of wavy lines that form unique patterns running from the dorsal fin to the tail fin. The second feature is found underneath the small pectoral fins, five to seven small dots that stand out against the silvery-white.

Little tunny are considered opportunistic feeders, which is just a fancy way of saying that this fish will eat almost anything it can get a hold of. Typically, it will feed on crustaceans, smaller fish, and squid.

There is a wide range of organisms that prey on little tunny, including larger tuna, dolphinfish, swordfish, and various species of sharks.

E. allettatus reproduce between April and November around the Atlantic Ocean. Females will release their eggs into the open water for males to fertilize. Females release their eggs multiple times throughout the reproductive months, and the species can produce almost 2 million eggs per year. Whale sharks have been found in these waters, such as off the coast of Isla Mujeres, looking to gorge themselves on fish eggs.

These fish are very important to the local fisheries, including the West Indies. They’re a good fish to consume; the meat is darker and has a stronger taste than larger commercial tuna, and it can be prepared in a number of ways. Little tunny are also good game fish, because they give fishermen a bit of a challenge.

Their population numbers are good, and the species is considered to be of least concern of extinction by the IUCN Red List. If properly regulated, little tunny would be an excellent species of tuna to introduce to larger markets to ease off the pressure of other, scarcer species of tuna.

Isla Mujeres is on my list of places to go. I’ve already decided that while we’re there we’re going to try locally sourced little tunny, if it’s available. I would love to see if my tuna-loving husband enjoys this species of tuna!

Sources and links:
Reef Fish Identification: Florida Caribbean Bahamas 4th Edition by Paul Humann and Ned Deloach
https://www.floridamuseum.ufl.edu/discover-fish/species-profiles/euthynnus-alletteratus/ ⇐more extensive breakdown of little tunny
https://myfwc.com/wildlifehabitats/profiles/saltwater/tuna/little-tunny/ ⇐ key points
http://species-identification.org/species.php?species_group=fnam&menuentry=soorten&id=1925&tab=classificatie
https://www.fishbase.se/summary/97

Lionfish

A lionfish (Pterois volitans) rises up from the reef to hunt silversides. Photo taken by Dr. Alex Mustard, you can find more at www.amustard.com

Domain: Eukarya
Kingdom: Animalia
Phylum: Chordata
Class: Actinopterygi
Order: Scorpaeniformes
Family: Scorpaenidae
Genus: Pterois
Species: Pterois volitans

When talking about invasive species, I mentioned the lionfish. Can they hurt you? Yes. Are they devastating Atlantic coral reefs? Yes. However, they are not evil fish, despite one of their other common names: the devil firefish.

Pterois volitans is a beautiful fish native to the tropical waters of the eastern Indian Ocean and the western Pacific Ocean. They can be found in depths of 7−180ft (2−55m) near seagrass beds, coral reefs, artificial reefs, and sunken ships. I’ve seen them hiding in crevasses or overhanging ledges on the reef.

When diving, lionfish can be fairly easy to identify. Along the head and body of the fish are alternating maroon and white strips, stretching from top to bottom. Long, unique, fan-like fins, with the same stipe pattern, help the lionfish corner its prey against a reef or hard surface. Along the top, are long striped spines that you want to avoid.

Lionfish are carnivorous fish that prey upon shrimp, crabs, and more than 50 species of fish. In their native habitats, they help to keep the reef healthy, and their populations are controlled by the few predators that eat lionfish, including a couple of species of moray eels and the bobbit worm.

In the Atlantic Ocean, however, they can eat all the available prey in a given reef if gone unchecked. With no natural predators in the Atlantic, and the fact that they produce a lot of eggs each year, their populations have boomed while the populations of herbivore and commercial fish have decreased.

Despite their invasion of the Atlantic, lionfish are quite important. Whether it’s in the Pacific, Indian, or Atlantic Ocean, Pterois volitans provides food and income to the coastal communities. Divers pay good money to see lionfish, and the fish is often the target of many spearfishing tournaments in the Atlantic. You can win hundreds of dollars, depending on where you sign up! Because they’re so distinctive, lionfish can be easy targets for divers.

P. volitans are also quite popular in home aquariums around the world. Their unique coloring and flamboyant fins make for a great conversation starter at a party! Just a reminder, though: if you’re getting rid of your aquarium fish, please don’t dump them in the ocean closest to you. Take them to your local aquarium and ask for help. You never want to dump a potential invasive species in your ocean.

Another common name for lionfish is tastyfish. When I was studying in Jamaica, our dive teams would always bring spear guns, and we would hunt lionfish while exploring or doing research. When we’d come back to the lab, we’d clean them and give them to the lab’s cafeteria. Let me tell you, those wonderful ladies made some amazingly spicy lionfish!

If we make it more popular to eat lionfish, then that will help solve the population issues in the Atlantic, and it will help take the pressure off some of our commercial fish. So, the next time you’re at your local fish market or restaurant, ask for lionfish and let the owners know you’re interested!

The coloration of a lionfish is a special adaptation called warning coloration, which indicates to potential predators that it’s unsafe to eat the lionfish. In this case, the warning is legitimate. In the spines along the top are glands that store venom. When the spines puncture the skin the glands release the venom into the wound. The venom can cause excruciating pain, sweating, paralysis, and respiratory distress; rarely has it been fatal to humans.

I had a couple of classmates get stung by lionfish. One kid got stung by a live one they didn’t see in the reef, which is why you never reach your hands into areas you can’t fully see. Another kid got stung when handling a dead lionfish. In both cases, they had to be rushed to the doctor, but even after being treated, the wounds remained quite painful for a while. So please be careful while diving around lionfish or when handling them!

Lionfish (Pterois volitans) fritters offered as an after dive snack. Photo taken by Dr. Alex Mustard, you can find more at http://www.amustard.com

Sources and links:
Ocean: The Definitive Visual Guide by the American Museum of Natural History
https://www.floridamuseum.ufl.edu/discover-fish/species-profiles/pterois-volitans/
https://oceanservice.noaa.gov/facts/lionfish-facts.html
https://www.fisheries.noaa.gov/southeast/ecosystems/impacts-invasive-lionfish
https://www.britannica.com/animal/lionfish
https://blog.nationalgeographic.org/2013/07/19/top-5-myths-about-lionfish/
https://lionfishcentral.org/resources/lionfish-recipes/ ←lionfish recipes you can try at home!

Sea Whip

Domain: Eukarya
Kingdom: Animalia
Phylum: Cnidaria
Class: Anthozoa
Order: Gorgonacae
Family: Gorgoniidae
Genus: Leptogorgia
Species: Leptogorgia virgulata

I’ve realized that so far the only corals I have mentioned have been hard corals—reef builders. I will admit, that I like more hard corals than soft, but that doesn’t mean soft corals aren’t worth talking about. Continuing with my Chesapeake Bay theme, I’m going to talk about a native soft coral, the Sea Whip.

Cue the 80s music: “Crack that whip!” “Just whip it!”

The major difference between hard and soft corals is the composition of their bodies. Hard corals have permanent, rigid exoskeletons that house the coral polyps. These structures require large amounts of energy to build, which is why it can take a year for hard corals to grow just an inch, at best. Soft corals, however, lack that rigid calcium carbonate skeleton. Instead, soft corals are mostly made of living tissue that allows the soft corals to assume more creative shapes.

Sea whips, Leptogorgia virgulata, have long, thin branches that can grow up to a meter long. Their coloring can vary from red, to tan or orange, to purple. The polyps are always white, so sea whips look like they’re covered in white fuzz. Most soft corals are more colorful than their harder cousins.

Sea whips are found in reef environments and can tolerate low levels of salinity, so they are most common in nearshore areas that are more influenced by the tide. They range from New York to the Chesapeake Bay and from Florida to Brazil. In the Chesapeake Bay they thrive in the salty waters of the lower section of the bay.

L. virgulata are suspension feeders, so the polyps use their long tentacles to snag plankton and other tiny particles that are suspended in the water. When sea whips are born, the tiny polyps are carried by waves and currents. When they reach adulthood, so to speak, they become sessile meaning they cannot move from the hard substrate they land on. So they rely heavily on water circulation to stir up the water and bring in more plankton and nutrients for them to feed on.

I have yet to see a sea whip while diving, which is something I wish to change. But I wanted to share this soft coral to show that not all corals are found in tropical places, and that corals can be a lot more diverse than we think. And I’m happy to report that as of this writing, the populations of sea whips in the Chesapeake Bay and other monitored areas are considered stable!

Sources and more info:
https://www.chesapeakebay.net/discover/field-guide/entry/whip_coral
http://www.dnr.sc.gov/marine/sertc/octocoral%20guide/Leptogorgia_virgulata.htm
https://naturalhistory2.si.edu/smsfp/IRLSpec/Leptog_virgul.htm

Alexandrium monilatum

Domain: Eukarya
Kingdom: Prostita
Phylum: Dinophyta
Class: Dinophyceae
Order: Gonyaulacales
Genus: Alexandrium
Species: monilatum

After spending some time talking about the horrors of invasive species, let me throw you a curve ball. We should all agree that invasive/nonnative species are harmful to us and the environments that they infiltrate. However, not all native species are good for their environment either.

How can organisms that are part of the natural balance of their environment be bad for it?

The simplest explanation I can give is this example. Our bodies need potassium to function properly, which we get from food like bananas. If our bodies don’t have enough potassium, then our muscles cramp and we can become stiff and sore. If we consume too much potassium, then it can poison and even kill us. Don’t worry, though; you would have to consume a truck load of bananas in a single day for that to happen.

Like our own bodies, environments need everything in moderation.

Alexandrium monilatum is a single-celled dinoflagellate found in the warm waters of the Atlantic Ocean, Gulf of Mexico, Caribbean Sea, parts of the Pacific Ocean, and the Chesapeake Bay. It is a special kind of bioluminescent algae; when agitated, the organism produces its own light in the form of a soft blue glow.

This dinoflagellate can reproduce sexually and asexually, meaning it can use its own genetic material to make copies of itself without the use of other individuals. It can also produce chains of individuals, ranging from 2 to 80 A. monilatum per strand.

A. monilatum uses photosynthesis to create its own food, making it a phototroph. It is preyed upon by small fish and filter feeders, making it part of the base of the food chain. So how can this armored alga be a bad thing? It sounds so productive, and it even glows blue at night when waves stirs the water!

The problem with A. monilatum is that it is considered a Harmful Algal Bloom (HAB) species. When conditions are right, this species will reproduce faster than it can be consumed by its predators, causing an algal bloom in the water. Blooms are large patches of algae that are seen by the naked eye, meaning there are millions of individuals concentrated in a single area.

Blooms are considered a problem because the water contains a finite amount of nutrients available to the algae. Once the supply runs out, it’ll take time to replace those needed nutrients. So these blooms are extremely productive for a short time, before the algae run out of food and die. When they die, they start to decompose. The process of decomposition takes up a lot of oxygen, and without the photosynthesizers there to replace the oxygen being used, the water becomes hypoxic—or worse, anoxic.

Once the amount of dissolved oxygen in the water is depleted, the area becomes a dead zone, and all the fish and other marine organisms either leave or suffocate in the water. Dead zones aren’t always permanent; however, they are still an inconvenience to the marine life and to us and should be prevented at all cost.

It is not my purpose to make Alexandrium monilatum out to be a bad guy, just to show that even native species can harm their environment under certain conditions. Algal blooms, or red tides, can be caused by a steep increase in important nutrients found in fertilizers, which enter the water as run-off from nearby farms, gardens, and agricultural facilities. A boom in available food causes a boom in creatures that depend on it, and that’s true no matter the species.

Bioluminescent algae are fascinating. I was lucky enough to swim at night in a lake full of a species of bioluminescent algae, though I’m uncertain what species it was. It was a magical experience that I will never forget, so I was excited to talk about A. monilatum and to discuss the importance of balance within an ecosystem.

Sources and more info:
https://naturalhistory2.si.edu/smsfp/IRLSpec/Alexan_monila.htm
https://www.chesapeakebay.net/discover/field-guide/entry/alexandrium_monilatum
https://www.vims.edu/bayinfo/habs/guide/alexandrium.php
https://www.vdh.virginia.gov/environmental-epidemiology/harmful-algal-blooms-habs/alexandrium-monilatum-hab-in-lower-york-lower-james-rivers-and-chesapeake-bay/frequently-asked-questions-faqs-alexandrium-monilatum/

Atlantic Mushroom Coral

Domain: Eukarya
Kingdom: Animalia
Phylum: Cnidaria
Class: Anthozoa
Order: Scleractinia
Family: Mussidae
Genus: Scolymia
Species: Scolymia lacera

Not all hard coral grow to be great big structures. And while most coral are considered to be a colony of polyps—i.e., individuals living together—there are some that are quite solitary. Some of them, like the cup corals, live a bit differently than their cousins and distant relatives.

Atlantic Mushroom coral, or Scolymia lacera, is one of a few cup corals found in the Western Atlantic Ocean. In fact, they occasionally can be found in deep-reef environments and on reef walls in the waters around Florida, the Bahamas, and the Caribbean. They prefer well-lit areas on rocky surfaces and outcroppings, somewhere nice and stable with enough light to help out their zooxanthellae friends.

S. lacera varies in color from shades of light gray to green, blue-green, and brown. The few that I have seen while diving were a mix of blues and greens, almost like an alternating stripped pattern—though this isn’t the same of all individuals.

Unlike other coral, the whole structure that is S. lacera is made up of a single polyp. That’s right; this species of coral is not a colony like its other hard coral cousins. Instead, it is a single large, fleshy, roundish polyp that looks a bit rough around the edges—texture-wise, that is. The whole structure that you see is the corallite, or the skeletal cup in which an individual polyp sits in and can retract into. For S. lacera, the center of the corallite can be either flat or curved inward; rarely is it seen with a raised center.

The Atlantic Mushroom coral can grow to between 2.5 and 6 inches and is the only type of cup coral that you can identify in person if it’s larger than 4 inches in diameter. Any specimen smaller than 4 inches has to have its corallite structure examined for identification.

During the night and in turbid, cloudy conditions, the polys will extend their tentacles in the hopes of grabbing food.

I think these guys are really cool because they break the mold, so to speak, when it comes to most hard corals. Instead of being a colony of individuals, each structure is a single large individual. They’re also pretty neat to spot on the reefs because they can be these bright colorful spots amongst drab shades. When I first saw them I didn’t think they were coral. It wasn’t until I started taking classes and we discussed them that I learned what they were.

Sources:
Reef Coral Identification: Florida, Caribbean, Bahamas 3rd edition Paul Humann and Ned DeLoach

https://coralpedia.bio.warwick.ac.uk/en/corals/scolymia_lacera <–At the time of posting this article, I hadn’t gotten the rights to share any photos of the coral, but you can see pictures of this species at the link–please take a look!

Caribbean Spiny Lobster

A Caribbean spiny lobster (Panulirus argus) emerges onto a coral reef in late afternoon. Photo taken by Dr. Alexander Mustard. More photos like this can be found on his website: www.amustard.com

Domain: Eukarya
Kingdom: Animalia
Phylum: Arthropoda
Class: Malacostraca
Order: Decapoda
Family: Palinuridae
Genus: Panulirus
Species: Panulirus argus

Originally, I was going to write a post about the Spiny Lobster, but then I realized that there are at least two species with that common name. One lives in the Atlantic and the other in the Pacific. Today, I’ll be talking about the Caribbean spiny lobster, or Panulirus argus.

P. argus can be found around coral reefs, seagrass beds, and rocky areas off the coast from North Carolina to Brazil, in the Gulf of Mexico, and the Caribbean Sea.

These guys are a combination of tan, black, and white, with large white spots across their spiny bodies. They also have two long antennae and large, forward-facing eyes.

Unlike other lobsters, the Caribbean spiny lobster’s claws are not terribly large and don’t cause a lot of damage. However, these guys are not without their defenses. The carapace—the body of the lobster and not the tail—is covered with small spikes and can cause injury to anyone who tries to pick up these guys barehanded. So, swimmers, don’t touch them!

These guys start out rather tiny as larvae. In fact, they’re considered zooplankton and are food for numerous fish. If a larvae survives, it eventually can grow to about 2 ft. long, though not without getting rid of its old exoskeletons a few times all the way.

P. argus are considered to be omnivores, though they primarily feed on bivalves and gastropods, and they have been seen eating other things as well.

I think the coolest thing about these guys is their mass migrations. In autumn, P. argus will be seen walking in long, single-file lines to deeper waters during the day; in theory, to find cooler areas and more food.

I’ve seen Caribbean spiny lobsters most often at fresh fish markets, though I’ve seen them a few times during some of my dives. They’re really important to coastal economics, because a lot of coastal areas will hunt them and export their sought-after meat to other countries.

Unfortunately, this means that this species can become victim of overfishing, and population numbers can be wiped out completely. There is no conclusive data on the status of their populations as a whole and whether or not the species may become threatened by extinction, but that doesn’t mean we shouldn’t be careful.

If regulations aren’t put into place, then entire populations can be wiped out, and many small countries that rely on their export will suddenly be faced with an economic crisis.

Sources:
Reef Creature Identification: Florida, Caribbean, Bahamas 3rd edition by Paul Humann, Ned DeLoach, and Les Wilk
https://animaldiversity.org/accounts/Panulirus_argus/
https://marinebio.org/species/caribbean-spiny-lobsters/panulirus-argus/
https://www.fisheries.noaa.gov/species/caribbean-spiny-lobster
https://thisfish.info/fishery/species/caribbean-spiny-lobster/
https://oceana.org/marine-life/cephalopods-crustaceans-other-shellfish/caribbean-spiny-lobster

Doctorfish

Domain: Eukarya
Kingdom: Animalia
Phylum: Chordata
Class: Osteichthyes
Order: Perciformes
Family: Acanthuridae
Genus: Acanthurus
Species: Acanthurus chirurgus

Last time on Doctor Who, the Doctor was mortally wounded and forced to regenerate…again. This time, though, to everyone’s surprise and horror, the Doctor turned into a fish. And not just any fish, but the tropical surgeonfish known as the Doctorfish—bum bum buuuuuuuuuuuum!

For those of you who don’t know, I’m a giant nerd, and I laughed way too hard when I realized that I could combine Acanthurus chirurgus with Doctor Who. I have no shame—most of the time.

Anyways, the Doctorfish is a type of surgeon fish that inhabits coral reef areas and can be commonly found in Florida, Bahamas, and the Caribbean. They can also be found in the waters of the Gulf of Mexico, north to Massachusetts, south to Brazil, your neighbors’ exotic aquarium, and the tropical waters of West Africa.

Color is not always an easy way to identify these Doctorfish because they can range from bluish gray to dark brown, and they can pale or darken dramatically between individuals. The major way to identify them while diving is by looking at the body; all doctorfish have 10‒12 vertical bars between their head and their tail. They also have distinct markings around their eyes, almost like flashy eye make-up.

Acanthurus chirurgus are herbivores that feed on algae, and they even have special teeth that allow them to pick off the algae growing in the sand, in rocky areas, and even on coral. In fact, these guys are really important to reef health because they can consume the algae that grow on coral, which would otherwise smoother the coral and their best friends, the zooxanthellae.

The origin of their common name is pretty cool. A. chirurgus have spines on either side of their caudal peduncle, or the base of their tail, that were discovered to be really sharp like a scalpel that doctors use. When feeling defensive, surgeonfish will use those spines as weapons by slashing their tails side to side at their aggressors.

Typically, Doctorfish will keep their distance from divers and will try to stay away if approached. However, people handling these fish can get serious injuries which are often quite painful and can lead to serious infection, especially since there is a crazy amount of bacteria and viruses in a single drop of water! So please be careful when diving with or handling doctorfish!

They are a common fish species found in private aquariums, and while they are not considered to be at risk of becoming endangered, you should still be aware of how they are caught and sold before purchasing individuals for your aquarium.

The doctorfish was one of the fish species I had to learn to identify for my Coral Reef Ecology class in college. I’ve seen them a handful of times when diving around reefs, and I’ve even watched them eating the algae from the coral, which was pretty cool to witness. I’ve read that you can eat Doctorfish, but I won’t try that because of the slight chance of getting ciguatera poisoning—which I’ll save for another ramble!

Sources and cool links:
Reef Fish Identification: Florida Caribbean Bahamas 4th ed. By Paul Humann and Ned DeLoach
http://species-identification.org/species.php?species_group=caribbean_diving_guide&menuentry=soorten&id=209&tab=beschrijving
https://www.floridamuseum.ufl.edu/discover-fish/species-profiles/acanthurus-chirurgus/
https://www.iucnredlist.org/species/177982/1510626
https://www.fishbase.de/summary/943

Flamingo Tongue

A flamingo tongue (Cyphoma gibbosm) feeding on a seafan (Gorgonia ventalina). Cyphomas feed on corals and concentrate the toxic chemicals into their mantle, which they then wrap around the outside of its white shell. The mantle is brightly coloured to warn predators of its toxicity. The mantle also absorbs oxygen from the water. Photo and caption by Dr. Alex Mustard. Find more photos at www.amustard.com

Domain: Eukarya
Kingdom: Animalia
Phylum: Mollusca
Class: Gastropoda
Order: Littorinimorpha
Family: Ovulidae
Genus: Cyphoma
Species: Cyphoma gibbosum

Please note: no flamingos were harmed in the making of this creature.

Honestly, I don’t know how they got they got their common name. These mollusks look nothing like flamingo tongues, and I should know because I’ve been staring at flamingo pictures for the past several minutes!

Cyphoma gibbosum are interesting mollusks to find on a reef. They have bright orange spots that are outlined in black on a creamy background, but the mollusks aren’t terribly big, averaging about 1‒1.5 inches long. When they’re young, they don’t have many rectangular spots, but as they get older, the spots get smaller and more numerous.

Flamingo tongues can be found on coral reefs in the Western Atlantic, from North Carolina to Brazil, in the Gulf of Mexico, and in the Caribbean Sea. They make their homes on gorgonian corals (soft corals), which is the only thing they consume—eating the soft tissue of the coral they sit on. Flamingo tongues use the chemicals from their prey in their own natural defense against predators by storing the chemicals in their soft tissue, the mantle, making them taste disgusting to most fish. Their predators include pufferfish, hogfish, and the Caribbean spiny lobster.

For those who don’t know—which until recently included myself—the bright spots that you see aren’t part of their shell. In fact, their shell is a very basic-looking cream color, and the spots that you’ll see when diving and snorkeling at a reef are actually the fleshy bits that hide the shell, called the mantle. When frightened, a C. gibbosum will retract into its creamy shell, pulling its colorful patterned mantle inside.

Unfortunately, the populations of C. gibbosum have decreased rapidly in recent years due to the increase activity of humans. Specifically, divers and snorkelers see these cool guys on the reef and think that the spots are part of their shell, so they decide to bring them back as a neat souvenir. When the creature dies, all that’s left is a simple shell sans the color and the spots.

Flamingo tongue shells have also boomed in popularity in the coastal jewelry business, so people will collect a lot of them to make their jewelry. As far as I’m aware, there is no data that can determine if the species is threatened or endangered and there are no regulations in place to protect them. However, that still shouldn’t stop us from being more aware of the situation and doing what we can to help, for instance know where the shells on your jewelry come from before you buy it.

I was lucky enough to spot a few of these guys while diving in Jamaica. I saw them the most when we went to a gorgonian-heavy reef, naturally, and the C. gibbosum were one of the cooler things to spot while swimming by. They’re small and can be easy to miss, but whenever I found one, I was mesmerized by it for a few beats before moving on. I think the coolest thing about them is their ability to be unaffected by the toxins the soft coral produce to deter predators, and they can use it to make themselves distasteful too.

Sources:
Ocean: The Definitive Visual Guide made by the American Museum of Natural History
Reef Creatures Identification: Florida, Caribbean, Bahamas 3rd Ed. By Paul Humann, Ned DeLoach, and Les Wilk
http://www.marinespecies.org/aphia.php?p=taxdetails&id=432297#links
http://species-identification.org/species.php?species_group=caribbean_diving_guide&id=410
http://www.thecephalopodpage.org/MarineInvertebrateZoology/Cyphomagibbosum1.html
https://oceana.org/marine-life/cephalopods-crustaceans-other-shellfish/flamingo-tongue
https://www.lamar.edu/arts-sciences/biology/marine-critters/marine-critters-1/flamingo-tongue.html

John “Charlie” Veron

Domain: Eukarya
Kingdom: Animalia
Phylum: Chordata
Class: Mammalia
Order: Primates
Family: Hominidae
Genus: Homo
Species: Homo sapiens

I want to take the time to talk about the major people that have been involved in the various aspects of marine science. During freshman year of college, my very first class was spent talking about some of the influential people that helped to get us to where we are today, one being Aristotle and his recorded work in marine biology. So many people—naturalists, sailors, and scientists—have done so much for all of the fields in marine science that I didn’t know where to start, but I want them all to be known.

So I went back to why I started this blog, because I’m a coral enthusiast, and I wanted to share my love for them and their world with everyone else, which led me to Charlie Veron, a fellow coral lover.

Born in Sydney, Australia in 1945, Dr. Veron has spent his life dedicated to coral and their reefs, so much so that he has been dubbed the “King of Coral” or the “Godfather of Coral.” How did he earn such a title?

Dr. Veron is credited for formally naming and describing over 100 new species of coral and discovering about 20% of the world’s coral species. He’s worked in Australia, the Caribbean, and every major coral reef area in the world. Many of the species he has found belong to the genus Acropora, the same genus as the Elkhorn coral that I first spoke about!

He’s written several books, including a three volume series called The Coral of the World, and he’s authored more than 100 scientific papers. Even now, he hasn’t put up his hat at over 70 years old!

With the help of many colleagues, Dr. Veron is developing a free website based on his famous three-volume book on coral. The website is updated as information changes and is an amazing resource for students and researchers alike—and I can’t wait to start looking through it myself! He’s also actively campaigning on climate change, ocean acidification, mass bleaching of coral reefs, and so many related issues through interviews and documentaries.

I highly recommend watching some of the documentaries that he’s featured in. I got the chance to see Raising Extinction by Rob Stewart, in which Dr. Veron had had an interview, and he was so interesting to listen to. It’s nice to see that even at such an age, he still has so much love and conviction for the ocean, and I’m thankful for all that he’s done and is still doing. His work is inspiring, whether or not you’re interested in coral!

Sources and cool links:
Ocean: The Definitive Visual Guide made by the American Museum of Natural History
http://www.coralsoftheworld.org/species_factsheets/ (This is the website I was talking about!!!!!)
http://therevolutionmovie.com/index.php/biography/dr-john-charlie-veron/

Sponges pt.1

A yellow tube sponge (Aplysina fistularis) growing on a Caribbean coral reef. Photo taken by Dr. Alex Mustard. More can be found at www.amustard.com

“Oooooooooooh! Who lives in a pineapple under the sea? SPONGEBOB SQUAREPANTS!”

Actually, pineapples are terrible places for sponges to live. If SpongeBob wanted the best place to survive and be successful, he would have lived on top of Patrick’s rock. I know, I know, it’s a show for kids and therefore isn’t accurate, but what better way to introduce the topic than with a relevant pop culture reference?

I just have to say that sponges are weird.

Like coral, they were first thought to be plants, which to be fair is quite understandable. Sponges don’t possess appendages, eyes, noticeable mouths, or reproductive parts, so if I had come across my first sponge without knowing its biology, I would have thought it was a plant too.

Sponges are the simplest multi-cellular creatures of the animal kingdom, and they’re so cool that they have their very own phylum, Porifera. In fact, sponges are so unique that they have no other close relatives.

Like other marine invertebrates, such as coral, barnacles, and oysters, sponges will permanently attach themselves to hard surfaces like rocks or shipwrecks. Some species of sponge will even burrow themselves into whatever substrate they want to call home. Once they’ve attached, there’s no second guessing, so hopefully they picked a good spot!

Unlike coral, sponges are a bit hardier and have fewer requirements to be successful. Sponges can live in a variety of different places that vary in temperature, salinity, and depth. About 2% of sponges can live in freshwater!

Sponges can be found almost everywhere: on rocks, shipwrecks, and coral reefs; they can be found in the tropics and higher attitudes, though a good portion of them live in Antarctic waters. Unlike coral, sunlight is a limiter for sponges. Too much sunlight exposure can be harmful for sponges, so they tend to prefer caves, crevices, and other places that don’t get a lot of direct sunlight.

However, there are a lot of sponges that live in areas with a few feet or less of water above them and in direct sunlight. These sponge species possess a special relationship with a species of algae that will dwell in the sponge. The sponge protects the algae from herbivores while the algae secretes pigments in the outer most layer of the sponge. These pigments act like sunscreen, thereby helping to protect the sponge from the sun.

Like most animals, a good place for a sponge to live will have a steady supply of food. Areas with strong tidal currents can support large sponge populations because all that water movement brings in extra food. Like whale sharks, sponges are filter-feeders, but how they feed is a bit more complicated. I will therefore have a whole post dedicated to how sponges eat!

For being the simplest multi-cellular animals you can find, sponges can be very complicated. I’ve barely scratched the surface of what make sponges unique and what they can do for their environments. But like all things, it wouldn’t be fun or interesting if it were easy!

Sources and fun links for those who want to dive right in to sponges:
Ocean: The Definitive Visual Guide made by the American Museum of Natural History
https://www.britannica.com/animal/sponge-animal#ref32631
http://www.oceanicresearch.org/education/wonders/sponges.html
http://tolweb.org/treehouses/?treehouse_id=4291
https://oceanservice.noaa.gov/facts/sponge.html